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Abstract - The propagation of acoustic signals in a waveguide can be efficiently modelled by a parabolic
approximation of the wave equation. Small and large angle parabolic approximation based on rational
Padé approximations are used together with a local and a non local (physically more realistic) impedance
boundary condition on the sea floor. The inverse problem consists of computing the coefficients of the
impedance condition (in order to reconstruct the acoustic field in the waveguide) from measurements
taken along a vertical hydrophone array placed at a given range. The source signal (at range zero)
is known, and a zero pressure boundary condition is applied on the sea surface. The optimal control
method for this problem is set up as follows. First, define a least-squares cost function (usually the
mismatch between the known measurements and the simulated field), constrained by the parabolic wave
equation. Take the variation of the cost function with respect to the control function (that appears in the
impedance boundary condition). Obtain an explicit representation of the gradient of the cost function
by introducing an adjoint boundary value problem. Finally, use this exact gradient in a gradient-based
optimization loop. The optimal control, thus computed, solves the inverse problem with high accuracy
and is computationally inexpensive when compared to the classical signal theory approaches currently
used in acoustics. We present the physical problem, the steps of the mathematical modelling and the op-
timal control formulation. Then we discuss the numerical approximation using implicit finite differences
and a conjugate gradient optimization algorithm with linesearch. Finally we show results of numerical
simulations, ranging from synthetic examples and benchmarks to comparisons with environments based
on real measurements obtained from sea trials.

1. INTRODUCTION

The acoustic field in a waveguide can be modelled by a paraxial approximation of the wave equation. If

we decompose the acoustic pressure p(r, z) = u(r, z)H
(1)
0 (k0r), where H

(1)
0 is the Hankel function, then

the field satisfies (see [1])
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∂r∂z2
= 0 , 0 < r < R, 0 < Z < H. (2)

ψ(0, z) = S(z), ψ(0, r) = 0, G2(ψ(r,H), γ) = 0.

where k0 = ω/c0, n = c0/c, ω is a fixed frequency, c = c(z) is the vertical sound speed profile and c0 is a
reference sound speed profile. The first equation is known as the small-angle parabolic equation (SPE),
the second as the wide-angle parabolic equation (WAPE). We suppose that the boundary condition on
the seafloor z = H is given by

∂u

∂z
+ iγu = 0 (3)

where γ is a complex-valued function depending on r and represents an impedance, or by (see [10])

{

∂

∂z
− iB

}

ψ [(J + 1)∆r, zb] = iB

J+1
∑

j=1

g0,jψ [(J + 1− j)∆r, zb] (4)
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where B = ρb

ρw

k0

√

N2
b − 1 + ν2, k0 = ω

c0

, Nb = nb[1 + iα], nb = c0

cb

, ν2 = 4i
k0∆r

, α is an attenuation, ρ is
density, c is sound speed, c0 is a reference sound speed, subscript b denotes the sea bottom and subscript
w denotes the water layer. This boundary condition provides an excellent model of the sea bottom, and
coupled with the WAPE gives a highly acceptable physical model.

The boundary value problem is completed by taking a zero pressure condition on the sea’s surface
and a known initial condition (signal source) at r = 0. The problem is then solved for 0 ≤ r ≤ R a given
range, and 0 ≤ z ≤ H a given depth.

Let us suppose now that we measure ud(R, z) on a line of hydrophones situated at the range r = R.
From these measurements we would like to recover the boundary coefficient γ(r) in (3) or γ

.
= (ρ, c, α) in

(4) that play the role of the control functions. Let the cost function be (we must add regularization terms
– see [2, 4] – on γ in order to make the optimization problem less ill-posed by restoring the continuous
dependence)

J(γ) =
1

2

∫ z=H

z=0

|u(γ;R, z)− ud(R, z)|
2 + regularization terms, (5)

where u(γ; r, z) is obtained from solving the paraxial equation (1) or (2) with the boundary condition
(3) or (4) and ud(R, z) is the desired or measured solution. The inverse problem can then be stated as
follows: for given measurements ud(R, z) of an acoustic field, find the complex coefficient γ(r) of the
impedance boundary condition that minimizes the cost function J(γ). In other words, find γ∗ ∈ G, the
optimal control, such that

J(γ∗) = inf
γ∈G,

J(γ),

where G is the set of admissible controls.

2. THE ADJOINT STATE METHOD

The adjoint method is a technique used for calculating an exact expression of the gradient of a cost
function that depends implicitly on the control variables with respect to which we must differentiate.
The method avoids the costly calculation of the derivative of the implicit function and is thus extremely
well suited to optimal control problems. The gradient can be calculated by means of a Lagrange multiplier
or an adjoint state.

Before discussing the method itself, we introduce some general definitions and notation for inverse
problems. A more detailed review of the approach can be found in [2] where the important issue of
regularization is also discussed (see also [4] for an application to the geoacousic inversion problem). In
[8] one can find a discussion of the Fréchet derivatives that we use to derive our functional gradient.

Inverse problems

In order to give an abstract formulation of the class of inverse problems, we introduce three Hilbert spaces
as well as mappings between these spaces. The spaces are:

• the model (control or parameter) space M ;

• the state space U ;

• the data (or observation) space D ;

The state space U enables us to describe explicitly the dependence between the control (parameters) and
the data. Nonetheless, the existence of the state does not dispense us of introducing the observation,
since the state is in general not measurable. Two mappings (equations) give the relationships between
these three spaces.

The state equation links implicitly the control and the state. We write

F (a, u) = 0, a ∈M, u ∈ U, F (a, u) : M × U → Z (6)

where Z is another Hilbert space. We suppose that there exists a subspace Mad ⊂M (the space of
“admissible” controls) such that for all a ∈Mad, F locally defines a unique state u = ua.

It will be useful to denote the solution of the state equation (6) as

u = S(a) = ua. (7)
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The observation equation extracts from the state, the part that corresponds to the measurements.
This will often be an injection due to the inherent difficulty of measuring the state at a large number
of points. It is written as

d = Hu, u ∈ U. (8)

We have made the simplifying assumption that the observation is a linear operator, independent of
the control. The extension to a more general situation is not difficult.

If we substitute the solution of (6) into (8), we obtain the mapping that relates the control (or the
parameter) to the observation. We write

d = Φ(a) = H
(

S(a)
)

= H(ua) (9)

The inverse problem is then: given an observation dobs, solve the equation

Φ(a) = dobs (10)

for the control (or parameter) a.

Least-Squares Formulation

In most cases the mapping Φ is defined implicitly. It is also nonlinear, even if the state and observation
equations are linear. This clearly makes it difficult to solve the inverse problem.

The problems (9) or (10) may not have a solution, and even if they have one, the inverse mapping is
not necessarily continuous. We are thus led to introduce a weaker formulation that has turned out to be
very effective. We replace equation (9) or (10) by the following minimization problem:

minimize J(a) =
1

2
‖Φ(a)− dobs‖

2
D for a ∈Mad. (11)

This formulation is called the output least-squares method for the cost function, or functional, J. It is
very important to understand how this functional “functions”. The observation is given once and for all,
then to evaluate the functional J at a parameter a, we start by solving the state equation (6), followed
by the observation equation (8), and finally we compare the simulated observation to the measured one.

This reformulation will not magically transform an ill-posed problem into a well-posed one. However,
it re-establishes the existence. Indeed, even if no solution exists for the equation (9), the minimization
problem will necessarily have a solution since the cost function J is positive. On the other hand, nothing
guarantees that the minimum will be attained at a point a ∈Mad. Another important question is that of
uniqueness which is related to the convexity of J and once more, there are no guarantees. The formulation
(11) does of course have numerous qualities:

• It gives a systematic method for the formulation of inverse and optimal control problems.

• In certain cases we can prove the necessary properties of J for the existence of a minimum.

• It enables us to regularize the problem by means of a family of well-posed problems whose limit
solution converges to the solution of the original problem.

• There are robust, well studied numerical methods for solving optimization problems.

• Under reasonable hypotheses on the data, the functional J is differentiable and can thus be min-
imized by local gradient-based optimization methods.

The Difficulties of Inverse Problems

The difficulties arise from a combination of factors.

• The cost function is in general non-convex. This leads to the existence of local minima and the
optimization algorithms will experience difficulties to converge to a “good” global minimum. We
can (and often do) obtain non-physical solutions.

• The inverse problem can be under-determined due to a lack of data. Here, once again, we can have
several solutions producing the same observations.

• The lack of continuity produces a discontinuity. Noise in the data can prevent us from being able
to solve the problem. This can be (partially) dealt with by penalization techniques.
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Methods for computing the gradient

In this section we consider a method for computing the gradient of the least-squares type cost function

J(a) =
1

2
‖Φ(a)− dobs‖

2
D (12)

where the nonlinear functional Φ is defined by the solution of the state equation

F (a, u) = 0,

whose solution is ua, then by extracting from ua the observation equation

Φ(a) = Hua. (13)

The difficulty clearly lies in the calculation of the derivative of the (implicit) function a → ua. We
detail the adjoint state method that permits this calculation at a cost that is independent of the number
of control parameters.

The sensitivity function

This is the most natural method for calculating the gradient of J . We differentiate the state equation
explicitly with respect to the parameter a, then we use the rules for the differentiation of a composite
function. We emphasize that this method gives an exact result.

Recall that
∇J(a) = Φ′(a)∗(Φ(a) − dobs). (14)

First we calculate the Jacobian of Φ. Since Φ is defined implicitly by the solution of the state equation
(6) and the observation equation (13), we must use the Implicit Function Theorem (or more precisely,
its corollary that permits one to calculate the differential of the implicit mapping once we know that it
is differentiable). This result tells us that we can obtain the Jacobian of Φ by differentiating the state
equation

∂uF (a, u)δu+ ∂aF (a, u)δa = 0, (15)

solving the (linear) equation obtained, and composing with the (derivative of) the observation (that we
have supposed linear). Thus

δu/δa = Φ′(a) = −H (∂uF (a, u))
−1
∂aF (a, u) (16)

Regrouping the equations (14) and (16), we finally obtain the gradient of J,

∇J(a) = (Φ′(a))∗ (Hu(a)− dobs) . (17)

The main disadvantage of this method lies in the fact that the computation of δu requires the solution
of a (linearized) state equation for each value of δa. After passing to finite dimension, this means that
the calculation of each partial derivative ∂J/∂aj requires the solution of an equation like (15). The cost
of the gradient computation is thus proportional to the number of parameters. This number can often
be very large: a few hundred, or even thousands. We will see below that the main advantage of the
adjoint state method is the possibility to achieve this computation at a cost proportional to that of a
single linearized equation solution, and in particular, independently of the number of parameters.

On the other hand, the sensitivity function method provides more than just the gradient, but also
gives the Jacobian of Φ. The Gauss-Newton method needs this Jacobian. If the number of parameters
is not too large, the Gauss-Newton method, by calculating gradients according to (17) can be more eco-
nomical than a quasi-Newton method with computation of the gradient by the adjoint state.

The adjoint state method

We have already seen that the sensitivity function method provides more than just the gradient of J . If
we need only the gradient, we can rearrange the calculation leading to (17) in order to avoid calculating
the full Jacobian. By substituting (16) in (17), and transposing the product, we obtain

∇J(a) = −
[

∂aF (a, u)∗(∂uF (a, u)∗)−1H∗
]

[Hu(a)− dobs] . (18)

The apparently trivial remark that will enable us to simplify the calculation, is that it is possible to
parenthesize this expression differently,

∇J(a) = − [∂aF (a, u)]
∗
[

(∂uF (a, u)∗)−1 (H∗ (Hu(a)− dobs))
]

. (19)
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It is convenient to give a name to the quantity inside the second parenthesis, and to introduce the
vector p, solution of

∂uF (a, u)∗p = −H∗ (Hu(a)− dobs) . (20)

We call this equation the adjoint equation, and p is the adjoint state. Once we have solved this equation,
the gradient is directly calculated from

∇J(a) = ∂aF (a, u)∗p. (21)

We summarize all of this in a theorem. See [2] for the proof in a general setting.

Theorem 1 If p is the solution of the adjoint equation (20), then the gradient of J at the point a is
given by (21), where u = u(a) is the solution of the state equation (6) corresponding to a.

Theorem 1 is of great importance. It provides the general framework on which the adjoint state
method is built. Since it can sometimes be difficult to apply directly in practice, we will propose a more
simple method for achieving the same result. Indeed, it can be difficult in a real case to identify the
different adjoints concerned, and even the operator F itself. This will be particularly true for evolution
problems.

Calculation of the adjoint state by the lagrangian

The previous paragraph showed how to calculate the gradient of a cost function by solving only two
equations: the state equation, followed by the adjoint equation. The operations of the formula (21) are
typically very simple, but the implementation is not as easy. We now present a technique that leads to
the same result, but turns out to be more flexible.

The method is based on what can be considered as a computational trick. We start by claiming that
the variables a and u vary independently, and we consider the state equation as a constraint. Under
these conditions, as we saw before, it is natural to introduce a Lagrangian. In our case, the Lagrangian
is written as (at least formally, since we do not have a finite number of constraints)

L(a, u, p) =
1

2
‖Hu− dobs‖+ 〈p, F (a, u)〉 . (22)

The fundamental remark (once again apparently trivial) is that, if u satisfies the state equation corres-
ponding to the parameter a, then we have the identity

L(a, u(a), p) = J(a), ∀p ∈ Z

since F (a, u) = 0. Differentiating this relation, we obtain

J ′(a)δa = ∂aL(a, u) δa+ ∂uL(a, u) ∂au(a)δa. (23)

The difficult part is then to calculate ∂au(a). If we can choose p ∈ Z such that this last term disappears,
we will have a simple expression for the derivative of J . To this end, we will suppose that δu = ∂au(a) δa
is an independent quantity, and we require that the operator δu→ ∂uL(a, u) disappears. We thus define
the abstract adjoint equation by

∂uL(a, u(a)) δu = 0, ∀δu ∈ U, (24)

and by expanding the expression for ∂uL

〈Hδu,Hu(a)− dobs〉+ 〈p, ∂uF (a, u(a))〉 δu = 0, ∀δu ∈ U. (25)

We have again found precisely the adjoint equation (20). Then the differential of J is calculated by
the formula

J ′(a)δa = 〈p, ∂aF (a, u(a)) 〉 δa (26)

and we observe that in fact we obtain the gradient of J ,

∇J(a) = (∂aF (a, u(a)))∗p, (27)

that is identical to (21).
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Remark 2 In practice, the most useful form of the adjoint equation is the “variational” formulation (25).
In fact, as we have already pointed out, it is not always convenient to calculate the adjoint operators. By
contrast, it is always simple (we will see below) to start out from the form (25), and to manipulate it
(by integration or summation by parts), in order to reach an explicit adjoint equation. In the same way,
it is often more convenient to start out from equation (26) and to manipulate it in order to identify the
gradient than to use formula (27) as it is.

We resume the main steps in a theorem.

Theorem 3 The computation of the gradient of the functional (11) is achieved by the following steps:

1. Define the Lagrangian by (22).

2. Solve the (variational) adjoint equation (25) that determines the adjoint state p.

3. The differential of J is given by (26) and enables the identification of the gradient of J .

3. APPLICATION OF THE ADJOINT METHOD TO THE INVERSE PROBLEM OF

UNDERWATER GEOACOUSTICS

Computation of the gradient of the cost function

For simplicity of the presentation we consider the small angle parabolic equation (1) with the local
boundary condition (3). The extension to the physically interesting case of the wide angle equation and
the nonlocal boundary condition can be found in [3, 6]. We start by taking the variation of J in (5)

lim
t→0

J(γ + tϕ)− J(γ)

t
=

1

2
lim
t→0

∫ z=H

z=0

|u(γ + tϕ;R, z)− ud(R, z)|
2 − |u(γ;R, z)− ud(R, z)|

2

t

= J ′(γ, ϕ) = g′(0),

where g is the function defined by
g(t) = J(γ + tϕ)

and φ is a smooth perturbation with compact support. We introduce the real-valued scalar product

〈u, v〉 = Re(uv).

This scalar product satisfies
〈u, u〉 = |u|

2
, 〈iu, v〉 = −〈u, iv〉 ,

〈u, v〉 = 〈v, u〉 , 〈γu, v〉 = 〈u, γv〉

and the derivative formula
d |u|

2
= 2 〈u, du〉 .

We then have

g′(t) =

∫

z,r=R

< u(γ + tϕ)− ud,
du

dt
(γ + tϕ) > dz,

where w = du
dt

is the solution of the linear tangent model (we suppose that n2 = 1 for simplicity)

2ik0wr + wzz = 0,

w(0, z) = 0,

w(r, 0) = 0,

wz(r,H) + iγw(r,H) = −iϕ(r)u(γ + tϕ; r,H).

The functional derivative of J is then, with t = 0,

J ′(γ, ϕ) =

∫

z,r=R

< u− ud, w > dz. (28)
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The adjoint state p is written here as

2ik0pr + pzz = 0, (29)

p(R, z) = u− ud,

p(r, 0) = 0,

pz(r,H)− iγp(r,H) = 0.

This equation for p is backward in r, since it is driven by a “terminal” condition at r = R, and the
boundary condition is still dissipative in spite of the change of sign of γ! Integrating by parts

∫

z

∫

r

< wr −
i

2k0
wzz , p >= 0

and using (29) and (28), we obtain

∫

z,r=R

< u− ud, w >=
1

2k0

∫

r,z=H

< uϕ, p >,

whence the result

J ′(γ, ϕ) =
1

2k0

∫

r,z=H

< up, ϕ >,

which can be rewritten as

∇J =
up

2k0
.

The gradient method

Once the gradient of the cost function ∇J is known, we can seek a local minimum of J(γ). The simplest
method for doing this is by steepest descent which uses the update

γ(n+1) = γ(n) − α∇J(γ(n)), α > 0 ,

for n = 0, 1, ... until convergence. In order to accelerate the convergence we will use a conjugate gradient
method of Fletcher-Reeves or Polak-Ribière type. Here the update is given by

γ(n+1) = γ(n) + αndn ,

where αn is the step-length that minimises J in the direction dn, and this direction is computed in two
steps:

βn =
∇JT

n+1∇Jn+1

∇JT
n ∇Jn

dn+1 = −∇Jn+1 + βn+1dn .

Finite difference approximation

The direct and adjoint boundary value problems are approximated by an implicit, second-order accurate,
Crank-Nicolson finite difference scheme.

4. NUMERICAL RESULTS

Due to lack of space, we only show results for the case of the small angle equation with local boundary
condition (1-3). The case of (2-4) is reported elsewhere - see [6]. As are numerical implementations of
regularization - see [4].

In Figures 1 and 2 we show the initial acoustic field, the true field and the field obtained after inversion.
The inversion succeeds admirably in both the reconstruction of the initial condition at r = 0 as well as
the principal features of the field. The relative errors in a 2-norm are only a few percent. Note the
manifestation of the non-convexity of the cost function for the inverse problem in Figure 2 part (b),
where the inverted γ is quite different from its true value and exhibits oscillations. In order to remedy
this phenomenon (it being inacceptable to the sonar operators) we perform some regularization. Details
can be found in [4]. In addition, as has been shown in [7], the use of multiple frequencies improves the
observability thus reducing the ill-posedness/non-convexity and effectively damping out the oscillations.
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Figure 1: Initial acoustic field (top), true acoustic field (middle) and inverted acoustic field (bottom).

5. CONCLUSIONS

We have formulated an adjoint state method for the solution of inverse problems in underwater geoacous-
tics. The numerical implementation of this method accurately reconstructs the acoustic field (on condition
that we have good initial guesses) and converges in a small number of iterations (5 to 10). Problems of
spatial oscillations arise and can be dealt with by suitable regularization techniques and by the use of a
multiple frequency cost function. The method is now being applied to realistic, double-layer models of
the ocean floor and compares favorably with environments based on real measurement campaigns, such
as those found in [9].

REFERENCES

1. F.B. Jensen, W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational Ocean Acoustics.
American Institute of Physics Press, New York, 1994.

2. C. Kravaris and J. H. Seinfeld. Identification of parameters in distributed parameter systems by
regularization. SIAM J. Control and Optimization (1985) 23, pp. 217-241.

3. M. Meyer, J.-P. Hermand and M. Asch, Derivation of the adjoint of a wide angle parabolic equation
for acoustic inversion, Proceedings of the Seventh European Conference on Underwater Acoustics,
ECUA 2004, Delft, The Netherlands, 5-8 July, 2004.

4. M. Meyer, J.-P. Hermand, J.-C. Le Gac, Penalization method for PE adjoint-based inversion of an
acoustic field, Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA
2004, Delft, The Netherlands, 5-8 July, 2004.

5. M. Meyer, J.-P. Hermand, Reciprocity in acoustic inversion: Time reversal, back wave propagation
and adjoint modelling, 2nd workshop on Acoustic inversion methods and experiments for assessment
of the shallow water environment, Ischia, Kluwer Academic Press, 2004.

6. M. Meyer, J.-P. Hermand. Optimal nonlocal boundary control of the wide-angle parabolic equation
for inversion of a waveguide acoustic field. J. Acoust. Soc. Amer., submitted (2005).

A07
8



0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

e 2

0 1000 2000 3000 4000 5000 6000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

r

γ

0 20 40 60 80 100 120 140
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

z

R
e(

ψ
)

0 20 40 60 80 100 120 140
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

z

Im
(ψ

)

(a)

(b)

(c)
(d)

Figure 2: Convergence results for inversion: (a) Relative l2−error of inital field (solid line, varying from
0 to 0.18 at r = R) and final field (dashed line, less than 0.05 for all r) as function of r; (b) initial (solid),
true (dotted) and inverted (dashed) values for <(γ) and =(γ); (c) and (d) initial (solid), true (dotted)
and inverted (dashed) values of the acoustic field at r = R. Note that the true and inverted curves in (d)
are perfectly superposed and thus indistinguishable.

7. M. Meyer, J.-C. Le Gac, J.-P. Hermand, M. Asch. An iterative multiple frequency adjoint-based
inversion algorithm for parabolic-type approximations in ocean acoustics. Inverse Problems, sub-
mitted (2005).

8. S. J. Norton. Iterative inverse scattering algorithms: Methods of computing Fréchet derivatives. J.
Acoust. Soc. Amer. (1999) 106, pp. 2653-2660.

9. M. Siderius and J.-P. Hermand, Yellow Shark Spring 1995: Inversion results from sparse broadband
acoustic measurements over a highly range dependent soft clay layer, J. Acoust. Soc. Amer. (1999)
106, pp. 637-651.

10. Yevick D., Thomson D.J., Nonlocal boundary conditions for finite difference parabolic equation
solvers, J. Acoust. Soc. Amer. (1999) 106, pp.143-150.

A07
9


